
481

Third InmmaLion21 Con/emnc_ on Inver_ Design Concepts and Opumi2_uon in Engine_nng Sciences
(ICIDES-ITrL Editor: G.S. Du!ikra,'ich. Washington D.C.. October 23-25. 1991.

| OPTIMAL INTERACTION OF INDENTER WITH INHOMOGENEOUS PLATE

ABSTRACT

Valery N. Aptukov

lnstLtut.e of ContLrtuous Media Mechantcs
U8 o[ the AcacZer_y of 5c_.em:es USSR,
Koroteva st., I, Perm., 614081, USSR

/'/l •

N92-13964/

Consideration is given to a new class of problems dealing
with an optimal design of inhomogeneous plate during dynamic pene-
tration of the rigid indenter. T_e quality criterion of the pro-
cess is defined by the specific mass of the target, which absorbs
the given kinetic energy of the indenter. Parameters of control
are expressed in terms of mechanical characteristics, i.e. distri-
bution of density p and the related hardness H across the plate
thickness. The maximum principle of Pontryagin are used to search
for piece-wise continuous control function. With consideration of
impact conditions and characteristics for a given class of mate-
rial an optimal target structure criterion has been estimated for
engineering application.

INTRODUCTION

The problem of searching for mechanical characteristics of
inhomogeneous plate subject to impact of a rigid body has been
stated first in [I] in the framework of theory of optimal control.
This study employs Pontryagin principle of maximum [2] to obtain
an optimal structure for a plate with minimal thickness and
prescribed specific mass. At present a considerable attention is
Focused on the problem of structure optimization as applied to the
case of inhomogeneous plate of a minimal specific mass using both
linear HCp) = lp + B [3] and nonlinear HCp) = _pD [4] relations.
An approximate approach to the analysis of penetration process,
based on the empirical relation [5] allows to obtain rather simple
criteria for structure optimization.

ANALYSIS

I. Fornmtatton of the probte_.

According to the applied theory of the plate specific resis-
tance p , penetration of the rigid indenter can be expressed [5]
as

p = H + _pv a (I.13
where H is dynamic hardness; _ is the shape factor of the indenter
head <in case of a tapered head _=sinaa, _ is a half angle of the
cone opening); v is the current penetration rate.

The equation of motion forulndenter is given as [3]

CI/23M dCv2)/dL = -2n _tKx,LD rC_DOrC_3/O_ d_, C1.2)
o

here L is the current penetration depth; r(_) is the expression
or generating line of axisymmetrical indenter; [ = L-x is the
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_oordinate relative to the tip of the indenter (fig. l). ]
Distributions of density and hardness are assumea to meet the

following requirements

p___, Q = { /::<x): _ ?Cx) SPz' (x_ [O,Lkl) ) ,

H_c_, _ = ( HCxg" HI _ HCx9 _ Ha, CxS [O,Lk]9 ) CI.33
We shall restrict ourselves to a class of materials for which

there exists a one-to-one mapping _ of the set _ in the set _ .

H = _Cpg, _ # H , pa# H2 with a_/ap > 0. According to the quality

criterion stated below, materials inconsistent with the latter
conditions are considered inadequate. Further it is assumed that
each of the materials is plastic enough and impact velocities lie
within the range in which applicatlon of the relation Cl a)
proved to be valid.

The boundary conditions for CI.2) im ly that the indenter
moves with the initial penetration rate u_h=O) = u and reaches

o

some unknown finite penetration depth Lk for which uCL k) : O.

We shall concentrate on the case with the plate thickness being

equal to the finite penetration depth b = Lk .

Specific mass of such target is taken as the principle crite-

rion of quality Lk

J = rain {_pC×3 d×} (1.4)
pc_Q o

2. Contca[ indenter. Ltnear re[atton H = _oCp3.

Let us consider the technique of applying the maximum prin-
ciple [2] to a number of particular problems. Within the framework
of theory of optimal control the problem may be expressed in the
form of _ {y_- u2, y2 ys} is the vector o_" phase coordinates, t
- i is the time analog )

dye�dr : -E [CI/2)B t 2 + CA + _y_)y2],
dv 2 /dt : yS, dy s/dt : p, Eft 1)

where E : C4_/M3 CtgcO 2.
In the following it is reasonable to introduce additional

phase coordinates y _, W3, since the right side of the equation of
motion involves an explicit form of functional CI,3), leading to
condit ion d_o/dt: -ah/ay°# O.

The mapping H : _(p) is assumed in the form of linear appro-
ximation

A : CH2- H,3/Cp2- P13' : ,P2 - H2p,3/Cp2- p,3, C2.2)

At the initial moment of time the vector of phase coordinates
, yaremains fixed £ = 0 ' y*m yo, = yS= O. The finite vector value

Yk belongs to a smooth, two-dimensional variety Sk Euclidean space
with dimension _ = 3

. 1 2 s) _ _ : 0 (2.3)Sk FkCYk' Yk' Yk Yk

_The condition of transversality for the vector of conjugate vari-
bles _ yields two relations ]
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t = t k ' _ = 0, VJ_ = 0

The equation for the conjugate variables takes the form

d_ /dt:E_ya_ , d_a/dt:ECA + _y_ D_ , d_3/dt:-_2 (2.5)

Optimization of the process p°,_° requires the existence of

such nontrivial constant _oS 0 and vector-function _Ci) with

will allow to meet the maximum condition [2]_
max hC_CLD,yCLD,L,pD = hC_tD,yCtD,t,p°D C2.8)

and transversality condition

hC_CtkO,yCtkO,tk,p°4tk ) = _ _nCtk)qn Ca. 7)
n

According to C2.4) the right-hand side of 42.7) is equal
to zero.

Hamiltonian operator is expressed as

h : c o% p-  E[c  e BL• +cA÷ + c28 
Integration of the system 42.5) combined with conditions

42.4), 42.7) enables one to define behavior of Hamiltonian h in

terms of linear function of p with coefficient _ = _o+_3.

3. Cyttndrtca[ indenter _tth a co_tc head of the height 6.
Linear relation H : IpCp).

The system of differential equations describing the
is divided into two parts:

-f [41/2)B t2 + CA + _y_)y2], t < 6
dy' /dt

-E [C_/2) B 6_ + CA + _y_)y_], t _ 6 ,

{y3 t < 6 {9Ct_, t < 6
' dya/dt :

dy_/dt = 23 - 69Ct-6), t _ 6 , pC t) - 9CL-6D,

Hamiltonian operator takes the form

h = C_o+_D_CtD - _,E_I/e_Bt _ +CA + _y'D/] + _y', for t <

h : C_o+_3]p('tD - C6_a- _aDpCt-6) + _ay 3 -

- _,E_I/2_B6" +CA + _y'Dy'] , for t _ 6

The equations for the conjugate variables is expressed as

_2._) ¥t_[O, tkJ. It iS assumed that the value y_ iS such that]

process

43.2)

t>6,

C3.1)
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pondiflion ik> 4 is satisfied automatically.

4. @LLru_tcaL Lru_r_tor with a /Lat
Wor_LLru_crc retatLor_ H = _p.).

end-face.

The equation of motion for indenter and Hamiltonian are writ-
ten, respectively as

dy I /dL = -E [ _o(p) ÷ py: ] , (4.13

h : _o p - w:E[gCp) + pyl]

Using differential
transversality condition

= I + y,/Z,

(4.2)

equation for conjugate variables and
gives:

h = P_, + _o(p){ (4.3?
t

} = /Z, Z = exp (-g _ kpdT) (4.4)
t

For a piecewise-linear relation @Cp) (see fig. 2) Hamiltonian
is transformed to a piecewise-linear function p wzth the slope

-I + CZPk/CB+ApkJ)CA+y' ) pg_[_ ,p,J
-I + (Zpk/CB +Dpk))CD+y I 3, ,c_p., Pa] (4.5)

For nonlinear relation ¢)Cp)=B+Ap n (A>O,n_O) Hamiltonian reduces to

h = f:xIC'p? + B_2, _ = _ + /n Z(yI+ Apn-I ")'

The conditions assumed for existence of continuous
may be expressed as

(ah/ap) I = _ + A_ Cp°.__-1 = 0p=po ,
w

ca2/u/aP') iI_p_ Ao c _,)0cpo)o-,<o

/n= pk/CB+Ap_) (4.6)
solutions

C4.7)

(4.8)

Following (4.7) one gets"

po = -t} l/C'Anl_ 2) , m. = I/Cn.-I)

Differentiation of C4. g), using C4.1) gives

+B,cAc -  ],

c4. g)

G : E/r_ (4.10)

l

RESULTS

Without going into details we shall examine some qualitative
results obtained for a number of special cases.

I. Ltru_ar reLattoa H : _o_p3.

From the analysis of the system (2.1),(2.5),(2.8) we can draw

he following qualitative conclusions •
(i? There is an interval (L,,L k] in which the optimal functi-
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pn has the form of pO = p,, i.e. the rear layer should be made of 1

more light and less hardness materials;

fii) The function po = p, is optimal within the entire

interval (Lo,Lk], if B >_ O;

(iii) In the case of B < 0 the structure of target should be

double layer with the front lay being made of hard and heavy mate-
rial. In this case a relay-type control is realized.

Similar results have been obtained for the case .C3.1),C3. a).

A general phase diagram of the optimal structure zs shown zn

fig. 3.

Here u is the velocity at which L k = 6, where 6 the height
!

of the indenter head. It is seen that the structure largely de-

pends on the parameter B. If the specific hardness _ = H/p is
assumed the measure of material quality, then, according to <2. a),

the condition B<O identifies the maximum quality of heavy material

{p2,H2}. In this case a double layer plate is an optimal structure

for a target. Contrary, when u > u an optimal structure may be
I o

represented by a homogeneous plate made from a light material.

2. NonLinear re[aLton H : _o6p9.

Ci) For a piece-wise linear function HCp) as plotted in

fig. a the problem is solved for three different materials. The
phase-diagram of the optimal structure is shown in fig. 4, where

= -(p,/p2)Cp2-p,)/Cp-p), X = CLk/6)2-I. As it follows from the

observable scale effect, the optimal structure for a given set of

materials CB,B I) depends on the relation ik/6.

Cii) For nonlinear dependence HCp) the function of the opti-

mal control may not include discontinuities. Inequality C4.8) is

valid for n <f in the neighborhood of CL,,tk], O<L,<L k. The

procedure of qualitative estimating the type of solution to the

equation C4.10) may be as follows. The first approximation (the

expressiQn in squat@ Brackets iD C4.103 is constant) follows from

ap_/at = -GCp_9 _ as Cp°9 TM = p-_+ GCL-t _ . This solution

is found to be exact for B =0. The second approximation has a more

complicated form. The results are shown in fig. 5. The position

Ccoordinate] of the point L, is calculated numerically ana may

coincide with the starting point of the process.
The results of present investigation allow to make a prompt

qualitative estimation of the optimal target structure. The best
ratio of layers in a double-layer target may be calculated

numerically by solving the equation of motion for indenter.
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